Skip to main content

A Novel Fabrication Method of Magnetic Co/Ni0.4Zn0.6Fe204 Coaxial Nanocables

Buy Article:

$107.14 + tax (Refund Policy)

A highly ordered Co/Ni0.4Zn0.6Fe2O4 coaxial nanocable array has been synthesized based on porous anodized aluminum oxide template via a new approach, which combines an improved sol–gel template method and alternating current electrochemical deposition. Scanning electron microscopy and transmission electron microscopy images show the nanocables are uniform with outer diameter of about 50 nm and inner diameter of about 17 nm. X-ray diffraction patterns and energy dispersive spectrometer confirm that Co nanowires are successfully deposited into the pores of the Ni0.4Zn0.6Fe2O4 nanotubes. Normalized magnetic hysteresis loops demonstrate the coercive force and the squareness with the applied field parallel to the axis of the nanocables increase dramatically compared with that of the nanotubes.

Document Type: Research Article

Publication date: 01 March 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content