Skip to main content
padlock icon - secure page this page is secure

Cyto-/Genotoxic Effect of CdSe/ZnS Quantum Dots in Human Lung Adenocarcinoma Cells for Potential Photodynamic UV Therapy Applications

Buy Article:

$106.73 + tax (Refund Policy)

Quantum dots (QDs) are luminescent nanoparticles (NPs) with promising potential in numerous medical applications, but there remain persistent human health and safety concerns. Although the cytotoxic effects of QDs have been extensively investigated, their genotoxic effects remain under-explored. This study scrutinized the cyto- and genotoxic effects of QDs with a Cadmium selenide/Zinc sulfide (CdSe/ZnS) core/shell, and suggests comprehensive guidelines for the application of QDs in cancer therapy. QDs were used to treat A549 cells in the presence and absence of ultraviolet A/B (UVA/UVB) irradiation. QD-induced cell death was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), apoptosis, and lactate dehydrogenase (LDH) assays, as well as by real-time PCR analysis of differential mRNA levels of genes, such as ataxia telangiectasia mutated (ATM), p53, and caspase-9, involved in apoptosis. The genotoxic effect of CdSe/ZnS QDs was measured in human cancer cells, for the first time, by comet and micronucleus assays. Treatment with CdSe/ZnS QDs and UVB irradiation resulted in the most severe extent of cell death, indicating strong induction of phototoxicity by CdSe/ZnS QDs in the presence of UVB. Both apoptotic and necrotic cell death were observed upon QDs and UVB combined treatment. The induction of Olive tail moments and micronuclei formation was also most significant when CdSe/ZnS QDs and UVB irradiation were combined. Our results on the genotoxic effect and mechanistic details of CdSe/ZnS QD-induced cell death suggest that UVB irradiation is the most effective method for increasing the potency of QDs during photodynamic cancer therapy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: March 1, 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more