Skip to main content

Energy Transfer Mechanisms in Yb3+-Doped GdVO4 Near-Infrared Downconversion Nanophosphor

Buy Article:

$107.14 + tax (Refund Policy)

Yb3+-doped GdVO4 nanophosphor was prepared by the co-precipitation method. Under ultraviolet (UV) light excitation, strong near-infrared (NIR) emission of Yb3+ (2F5/22F7/2) around 980 nm was observed. Owing to the host absorption of GdVO4, a broad excitation band ranging from 250 to 350 nm was recorded when the Yb3+ emission was monitored, which suggests an efficient energy transfer from the host to the Yb3+ ions. The concentration dependence of the visible vanadate emission and the Yb3+ emission was investigated. The decay curve of the vanadate emission was measured under the excitation of a 266 nm pulsed laser. The decay time of the vanadate emission at 500 nm was remarkably reduced by introducing Yb3+, further verifying that the energy transfer from the vanadate host to the Yb3+ ions was very efficient. Cooperative energy transfer (CET) is discussed as the possible energy transfer process. The temperature dependence of the emission intensity and decay time were also investigated for our further discussion.

Keywords: COOPERATIVE ENERGY TRANSFER; NEAR-INFRARED DOWNCONVERSION; PHOTOLUMINESCENCE; VANADATE

Document Type: Research Article

Publication date: 01 November 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content