Skip to main content

Photovoltaic Response of Carbon Nanotube-Silicon Heterojunctions: Effect of Nanotube Film Thickness and Number of Walls

Buy Article:

$107.14 + tax (Refund Policy)

We report on the multiwall carbon nanotube application as energy conversion material to fabricate thin film solar cells, with nanotubes acting as photogeneration sites as well as charge separators, collectors and carrier transporters. The device consists of a semitransparent thin film of nanotubes coating a n-type crystalline silicon substrate. Under illumination electron–hole (e–h) pairs, generated in the nanotubes and in the silicon substrate underneath, are split and charges are transported through the nanotubes (electrons) and the n-Si (holes). We found that a suitable thickness of the nanotube thin film, high density of Schottky junctions between nanotubes and n-Si and lowest number of nanotube walls are all fundamental parameters to improve the device incident photon to electron conversion efficiency. Multiwall carbon nanotubes have been synthesized by chemical vapour deposition in an ultra high vacuum chamber by evaporating a given amount of iron at room temperature and then exposing the substrate kept at 800 °C at acetylene gas. The amount of deposited iron is found to directly affect the nanotube size distribution (inner and outer diameter) and therefore the number of walls of the nanotubes.

Keywords: CARBON NANOTUBES; PHOTOVOLTAIC DEVICE

Document Type: Research Article

Publication date: 01 October 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content