Skip to main content

Ridge Formation and Removal via Annealing in Exfoliated Graphene

Buy Article:

$107.14 + tax (Refund Policy)

It is well known that graphene is a very promising material due to its excellent physical, chemical, and thermal properties. Previously, ridges in graphene on a substrate were found in epitaxial graphene on a SiC substrate. It was found in this study that ridges can be made on a graphene layer via mechanical exfoliation on a sapphire substrate, and that ridges can be created or removed through heating and cooling. Due to the difference of the thermal-expansion coefficients of the substrate and graphene, it can be said that thermal cycling causes compressive strain, which is released by forming ridges. Annealing was carried out in a vacuum chamber within the pressure range of 10−3∼10−6 Torr and at 900∼1100 °C. To analyze the shapes and mechanical properties of the ridges, Raman spectroscopy and AFM measurement were performed. It was found that the ridges can be extended by defect as a nucleation center, and the graphene layer can be folded along the preexisting ridge during heating and cooling.

Keywords: ANNEALING; ATOMIC FORCE MICROSCOPY; GRAPHENE; GRAPHITE; RAMAN; RIDGE

Document Type: Research Article

Publication date: 01 July 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content