Skip to main content
padlock icon - secure page this page is secure

Nearly Zero Reflectance of Nano-Pyramids and Dual-Antireflection Coating Structure for Monocrystalline Silicon Solar Cells

Buy Article:

$106.73 + tax (Refund Policy)

The effect of two-step surface treatment on monocrystalline silicon solar cells was investigated. We changed the nanostructure on pyramidal surfaces by wet nano-texturing so that less light is reflected. The two-step nano-texturing process reduces the average reflectance to about 4% in the 300–1100 nm wavelength region. The use of an antireflection coating resulted in an effective reflectance of 1%. We found that the reflectance obtained by wet nano-texturing was lower than that obtained by conventional alkaline texturing. Thus, we can expect a further increase in the efficiency of silicon solar cells with two-step nano-texturing by a wet chemical process.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Short Communication

Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more