Skip to main content
padlock icon - secure page this page is secure

Preparation and Release Characteristic of Quercetin Loaded Poly(lactic acid) Ultrafine Fibers

Buy Article:

$106.73 + tax (Refund Policy)

In this study, poly(lactic acid) (PLA) ultrafine fibers have been prepared by electrospinning method using mix-solvent. The results showed that the variation of solvent ratio (N,N-dimethylformamide (DMF)/Dichloromethane (DCM)) could change the surface morphology of PLA nanofibers. By adjusting the solvent ratio, the quercetin release rate from the fiber membranes could be controlled. Furthermore, by adjusting the PLA concentration, the nanofibers without beads could be obtained. After addition of quercetin to polymer solution, the spindle-shaped beads on the fiber disappeared, but surface morphology of the fiber changed little with increase in quercetin dosage, and the release rate of quercetin increased with increase of quercetin dosage.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more