Skip to main content
padlock icon - secure page this page is secure

Electroforming for Replicating Nanometer-Level Smooth Surface

Buy Article:

$106.73 + tax (Refund Policy)

We proposed and developed a new electroforming process for the replication of surfaces having nanometer-level smoothness. In the electroforming process, the separation method plays an important role in preventing the degradation of the surface morphology. The key point in this process is the fabrication of a metal film as an electrode on the master surface. Cr atoms are deposited by an arc plasma deposition method and act as a binding material. Subsequently, a nickel film is fabricated by electron beam deposition to form an electrode. Electrodeposition is then carried out in a nickel sulfamate bath. By controlling the density of Cr atoms on the master surface, the binding strength between the nickel film and master surface can be adjusted, which makes it possible to separate the metal film from the master surface smoothly. As a result, a surface roughness of 0.22 nm (root mean square) has been achieved in a 64 m × 48 m area of a replicated surface.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more