Skip to main content
padlock icon - secure page this page is secure

Absorption of Lithium in Montmorillonite: A Density Functional Theory (DFT) Study

Buy Article:

$106.73 + tax (Refund Policy)

The absorption of lithium in montmorillonite [LiSi8(Al3Mg)O20(OH)4] was investigated using Density Functional Theory (DFT). The final position of lithium after absorption was found to be in good agreement with an experimental observation where lithium atom migrated from the interlayer into the vacant octahedral site of montmorillonite. The lithium absorbed on montmorillonite was held together by a very strong attraction between ions and exhibited an insulating behavior as depicted from the density of states curve. Due to the presence of lithium in the octahedral site of montmorillonite, the OH group reoriented itself perpendicular to the ab plane and an electron of lithium was transferred in order to compensate the existing net charge of montmorillonite caused by isomorphous substitutions. Relative small charge transfer was observed between lithium and montmorillonite.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: April 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more