Skip to main content
padlock icon - secure page this page is secure

Out-Coupling Efficiency Enhancement of Organic Light Emitting Diode Device by SiO2-UV Hardener Composite Layer

Buy Article:

$106.23 + tax (Refund Policy)

The enhancement of out-coupling efficiency of organic light emitting diode (OLED) using SiO2-polymer composite layers was investigated. The SiO2-polymer composite was made from a SiO2 nanopowder and commercial UV-hardeners. The composite layer was coated on glass by dip-coating method in a SiO2 suspension, followed by spin-coating of 1 μm thick UV-hardener of was found that the optical properties were depend on the quantity of SiO2 nanopowder in the composite layer and dispersion of SiO2 suspension. 194/440 nm size of SiO2 nanopowders were added to the composite layer to enhance the light scattering effect. The OLED device which the SiO2-polymer composite layer was applied showed enhanced out-coupling efficiency around 30%.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more