Skip to main content
padlock icon - secure page this page is secure

Effect of Controlling Nano-Sized Copper by Silver in Copper-Based Catalyst on Catalytic Oxidation of Toluene

Buy Article:

$106.34 + tax (Refund Policy)

Catalytic oxidation of VOC (toluene) over a copper based catalyst was carried out to assess its properties and performance. The Brunauer Emmett Teller (BET) method, X-ray diffraction (XRD), temperature programmed reduction (TPR), N2O pulse titration and energy dispersive spectroscopy (EDS) were used to characterize a series of 5 wt% Cu/γ-Al2O3 catalysts modified with silver. The experimental results revealed that the addition of silver to 5 wt% Cu/γ-Al2O3 catalyst highly enhanced its catalytic activity. With increasing addition amount of silver, the light-off curve for complete oxidation of toluene shifted to lower temperature. In addition, the increase of the addition amount of silver caused the copper particle size of 5 wt% Cu/γ-Al2O3 catalyst to gradually increase. Subsequently, it demonstrated that the increase in the copper particle size is closely associated with the increase in catalytic activity.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more