Skip to main content
padlock icon - secure page this page is secure

Electrical Characteristics of Printed Ag Nanopaste on Polyimide Substrate

Buy Article:

$106.34 + tax (Refund Policy)

We investigated the effects of sintering temperature on the microstructural evolution and electrical characteristics of screen-printed Ag patterns. A conducting paste containing 20 nm Ag nanoparticles (73 wt%) was screen printed onto a polyimide (PI) substrate and sintered at a temperature of 150, 200, 250 and 300 °C for 30 min. The microstructures of the sintered patterns were examined using field emission scanning electron microscopy (FESEM). The resistivity under the application of a DC signal decreased with increasing temperature. In the frequency range from 10 MHz to 20 GHz, the S-parameters of the sintered Ag conducting patterns were measured. The S-parameters indicated that the insertion losses at high frequency decreased with increasing sintering temperature due to the formation of interparticle necking after sintering.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more