Skip to main content
padlock icon - secure page this page is secure

Wettability Control and Flow Regulation Using a Nanostructure-Embedded Surface

Buy Article:

$106.23 + tax (Refund Policy)

This work addresses the synthesis, integration and characterization of a nanostructure-embedded thermoresponsive surface for flow regulation. In order to create a hierarchic structure which consists of microscale texture and nanoscale sub-texture, hybrid multilayers consisting of poly(allylamine hydrochloride) (PAH), poly(acrylic acid) (PAA) and colloidal silica nanoparticles (average diameter = 22 nm and 7 nm) were used. Based on the electrostatic interactions between the polyelectrolytes and nanoparticles, a layer-by-layer deposition technique in combination with photolithography was employed to obtain a localized, conformally-coated patch in a microchannel. Grafted with the thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAAm), wettability of the surface could be tuned upon heating or cooling. The measurement of differential pressure at various stages of device verified the working conditions of the nanostructure-embedded surface for regulating a capillary flow in the microchannel.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more