Skip to main content
padlock icon - secure page this page is secure

Fabrication and Characterization of Nano-Channel Field Effect Transistors Patterned by AFM Anodic Oxidation

Buy Article:

$106.23 + tax (Refund Policy)

We report a top-down approach based on atomic force microscope (AFM) local anodic oxidation (LAO) for the fabrications of the nanowire and nano-ribbon field effect transistors (FETs). In order to investigate the transport characteristics of nano-channel, we fabricated simple FET structures with channel width W ∼300 nm (nanowire) and 10 μm (nano-ribbon) on 20 nm-thick silicon-on-insulator (SOI) wafers. In order to investigate the transport behavior in the device with different channel geometries, we have performed detailed two-dimensional simulations of nanowire and reference nano-ribbon FETs with a fixed channel length L and thickness t but varying channel width W from 300 nm to 10 μm. By evaluating the charge distributions, we have shown that the increase of 'on state' conduction current in SiNW channel is a dominant factor, which consequently result in the improved on/off current ratio of the nanowire FET.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more