Skip to main content
padlock icon - secure page this page is secure

CNT Manipulation: Inserting a Carbonaceous Dielectric Layer Beneath Using Electron Beam Induced Deposition

Buy Article:

$106.34 + tax (Refund Policy)

Electron beam induced carbonaceous deposition has been carried out in the presence of water vapor at 0.4 torr pressure amidst residual hydrocarbons present in the SEM chamber. When performed at a CNT location on a Si substrate with low e beam energy (10 kV), the deposition was taking place beneath the CNT. While higher beam energy (25 kV) causing the deposition on the top surface of the CNT, in agreement with the earlier reports. The insertion of dielectric carbonaceous layer beneath the CNT allowed us to measure the IV data along the length of the nanotube using CAFM.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more