Skip to main content
padlock icon - secure page this page is secure

Photoluminescence of ZnO in Metal Ion Exchanged Zeolite Y

Buy Article:

$106.51 + tax (Refund Policy)

The photoluminescence of nano-sized ZnO in metal–ion–exchanged zeolite Y (ZnO/M-FAU, M = Na, Ca, Er) was investigated. ZnO/M-FAU was prepared by exposing Er3+ - or Ca2+-exchanged Na-FAU to Zn vapor and to air at 723 K. The ZnO formation in the M-FAU showed a change in intensity in the (220), (311) and (331) lines, but no indication of ZnO peaks. In the EDXS and ICPAES analyses, it was found that the molar ratio of Zn/Si was linearly related to the exchanged amount of metal ions, and that the slope of the Zn/Si to the metal/Si was in the order of ZnO/Na-FAU < ZnO/CaNa-FAU < ZnO/ErNa-FAU. In the photoluminescence spectra of all the ZnO/M-FAU samples, peaks were observed at around 380 nm (3.2 eV) and 530 nm (2.5 eV) of ZnO. In ZnO/ErNa-FAU sample, the reabsorption of Er3+ at 520 nm and its emission at 650 nm were observed at the 530 nm peak of ZnO, which can be explained in terms of the interaction of ZnO with Er3+ in the FAU. In the case of ZnO/CaNa-FAU, the peak at around 380 nm was broaden to a longer wavelength, which is supposed to have been caused by emission peak of (CaO) X (ZnO) Y . In addition, there were some indications of interaction between Na+ ZnO in ZnO/Na-FAU and the ZnO that was doped with Na+. From the result, it is suggested that ZnO particles were formed in the cavities that interacted with the ions in the zeolites.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more