Skip to main content
padlock icon - secure page this page is secure

Coupling of Surface and Lowest Landau Level States in a Rectangular Graphene Dot

Buy Article:

$106.51 + tax (Refund Policy)

A rectangular graphene dot with two zigzag edges and two armchair edges have electronic states in the presence of a magnetic field that are localized on the zigzag edges with non zero values of the wavefunction inside the dot. We have investigated the dependence of these wavefunctions on the size of the dot, and explain the physical origin of them in terms of surface and the lowest Landau level (LLL) states of infinitely long nanoribbons. We find that the armchair edges play a crucial role by coupling the surface and LLL states.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: GRAPHENE; LANDAU LEVEL

Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more