Skip to main content
padlock icon - secure page this page is secure

Structure, Charge Transfer Bands and Photoluminescence of Nanocrystals Tetragonal and Monoclinic ZrO2:Eu

Buy Article:

$106.51 + tax (Refund Policy)

Eu3+-doped tetragonal and monoclinic ZrO2 (called t-ZrO2:Eu and m-ZrO2:Eu, respectively) nanoparticles were prepared using the Pechini sol–gel process. The samples were characterized via X-ray diffraction (XRD) and field-emission-scanning electron microscopy (FE-SEM), and with photoluminescence spectra. The influences of the Eu3+ concentration and the fired temperature on the crystal phase composition of the tetragonal and monoclinic ZrO2:Eu were reported. The typical interesting photoluminescence (PL) properties of the t-ZrO2:Eu and m-ZrO2:Eu nanoparticles were presented. In the t-ZrO2:Eu and m-ZrO2:Eu, the main emission peaks were at 607 and 615 nm, respectively, both of which originated from the 5D07F2 transition. The excitation band of the t-ZrO2:Eu powder with a lower Eu3+ doping concentration that was obtained at a low temperature (450 °C) consisted of a broad band of 230–500 nm. Both broad excitation bands in the t-ZrO2:Eu and m-ZrO2:Eu were ascribed to the O2− −Eu3+ charge transfer (CT) transition. The reason was discussed based on the relationship between the CT energy and its crystal structure. The CT energy of m-ZrO2:Eu is higher than that of t-ZrO2:Eu. A detailed chemical bond analysis was performed to explore the CT energy difference between t-ZrO2: Eu and m-ZrO2:Eu.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more