Skip to main content
padlock icon - secure page this page is secure

Synthesis of Fe3O4@PbS Hybrid Nanoparticles Through the Combination of Surface-Initiated Atom Transfer Radical Polymerization and Acidolysis by H2S

Buy Article:

$106.51 + tax (Refund Policy)

A versatile approach to fabricate nanoparticles with multiple functionalities through the combined use of both surface-initiated ATRP and acidolysis by H2S techniques was demonstrated. The hybrid nanoparticles exhibited the core–shell structure having the magnetite nanoparticles as the core and the polymethacrylate as the shell with PbS nanoparticles distributing in the shell. The structure and morphology of the synthesized nanoparticles were characterized using fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical and magnetic properties of the nanoparticles were investigated by UV-Vis spectroscopy, photoluminescence spectroscopy and vibrating sample magnetometer (VSM), respectively. It is observed that the absorption and emission behaviors of the Fe3O4@PbS hybrid nanoparticles were seriously influenced by the ATRP time and the reaction time with H2S. The saturated magnetization (Ms) decreased with the increase of ATRP time due to the formation of thicker shells coating on the surfaces of magnetite nanoparticles.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: January 1, 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more