Skip to main content
padlock icon - secure page this page is secure

Growth of TiO2 Nanorods on a Ta Substrate by Metal-Organic Chemical Vapor Deposition

Buy Article:

$105.00 + tax (Refund Policy)

TiO2 nanorods were successfully grown on Tantalum (Ta) substrates using titanium tetra isopropoxide (TTIP) as a single precursor without any carriers or bubbling gases. For characterization of the TiO2 structures, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were employed. For substrate temperatures below 800 °C, a rough film structure without nanorods could be found. However, at a sample temperature of 800 °C, nanorod structures with a respective diameter and length of 0.1∼0.2 m and 0.7∼1.5 m, respectively, could be synthesized. The nanorods exhibited a rutile phase with a 2:1 stoichiometry of O:Ti, identified using XRD and XPS. When the growth temperature exceeded 800 °C, agglomeration of the nanorods was identified.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 May 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more