Skip to main content

Formation of Catalyst Nanoparticles and Nucleation of Carbon Nanotubes in Chemical Vapor Deposition

Buy Article:

$107.14 + tax (Refund Policy)

Multi-walled carbon nanotubes and other carbon nanostructures have been grown using catalytic thermal chemical vapor deposition method in a horizontal tubular quartz furnace at atmospheric pressure. The mechanisms of nanotubes/nanofibers nucleation and growth are analyzed. A new model explaining the nanotube nucleation as a specific instability occurring on the catalyst particle surface supersaturated with carbon is presented. It is also shown that an axially symmetric instability, giving rise to the nanotube nucleation, is developed when certain critical conditions such as temperature, supersaturation and catalyst volume are achieved. For smaller temperatures, another mechanism of carbon segregation from supersaturated catalyst particles has been observed. In this case, flat rather than tubular graphitic layers are formed. These findings are important for better understanding and control of the synthesis of different carbon nanoforms using chemical vapor deposition.

Keywords: CATALYST; CHEMICAL VAPOR DEPOSITION; MULTI-WALL CARBON NANOTUBES; NICKEL; NUCLEATION

Document Type: Research Article

Publication date: 01 July 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content