Skip to main content

Nickel-Based 3D Electrocatalyst Layers for Production of Hydrogen by Water Electrolysis in an Acidic Medium

Buy Article:

$107.14 + tax (Refund Policy)

Electrocatalytic activity of three-dimensional nickel-based layers in the hydrogen evolution reaction (HER) was investigated in an acidic medium. It was demonstrated that patterning of a glassy carbon electrode substrate with a 3D polyaniline (PANI) matrix is a convenient way of increasing the electrocatalytically active surface area of electrodeposited Ni, and hence its apparent electrocatalytic activity. The optimized PANI/Ni electrocatalyst layer showed a significantly higher activity in the HER then a two-dimensional control Ni-plate surface. It was also demonstrated that it is possible to produce a Ni-based HER electrocatalyst layer by synthesizing Ni nanoparticles and supporting them on Vulcan carbon. This electrocatalyst also offered a significantly higher electrocatalytic activity in the HER then the control surface, but lower then the optimized PANI/Ni electrocatalyst. The electrocatalytic activity of the optimized PANI/Ni layer was also compared to the activity of a 3D catalyst produced by coating a porous RVC cube substrate with Ni. This electrocatalyst showed the highest HER electrocatalytic activity among the investigated layers when tested under potentiodynamic polarization conditions. However, under the potentiostatic conditions, the optimized PANI/Ni layer showed the highest electrocatalytic activity.

Keywords: CARBON SUPPORT; ELECTROCATALYSIS; HYDROGEN; NANOPARTICLES; NICKEL; POLYANILINE; THREE-DIMENSIONAL LAYER; WATER ELECTROLYSIS

Document Type: Research Article

Publication date: 01 April 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content