Skip to main content

Diamond LED Substrate and Novel Quantum Dots

Buy Article:

$107.14 + tax (Refund Policy)

Nitride LED (e.g., GaN) has become the mainstream of blue light source. The blue light can be converted to white light by exciting a phosphor (e.g., Nichia's YAG or Osram's TAG) with the complementary yellow emission. However, GaN is typically deposited on sapphire (Al2O3) substrates formed by crystal pulling or hexagonal (e.g., 4 H or 6 H) SiC wafers condensed from SiC vapor. In either case, the nitride lattice is ridden (e.g., 109/cm2) with dislocations. The high dislocation density with sapphire is due to the large (>13%) lattice mismatch; and with hexagonal SiC, because of intrinsic defects. Cubic (beta) SiC may be deposited epitaxially using a CVD reactor onto silicon wafer by diffusing the interface and by chemical gradation. A reactive echant (e.g., hydrogen or fluorine) can be introduced periodically to gasify mis-aligned atoms. In this case, large single crystal wafers would be available for the manufacture of high bright LED with superb electro-optical efficiency. The SiC wafer may be coated with diamond film that can eliminate heat in real time. As a result of lower temperature, the nitride LED can be brighter and it will last longer. The blue light of GaN LED formed on SiC on Diamond (SiCON) LED may also be scattered by using novel quantum dots (e.g., 33 atom pairs of CdSe) to form a broad yellow light that blend in with the original blue light to form sunlight-like white light. This would be the ideal source for general illumination (e.g., for indoor) or backlighting (e.g., for LCD).

Keywords: CDSE; DIAMOND FILM; FLUORESCENCE; GAN; LED; QUANTUM DOTS; SIC; WHILE LIGHT

Document Type: Research Article

Publication date: 01 February 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content