Skip to main content

Computational Studies of Small Carbon and Iron-Carbon Systems Relevant to Carbon Nanotube Growth

Buy Article:

$107.14 + tax (Refund Policy)

Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred.

Keywords: CARBON NANOTUBES; COMPUTATIONAL STUDIES; GROWTH

Document Type: Research Article

Publication date: 01 November 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content