Skip to main content
padlock icon - secure page this page is secure

Thermal and Electrical Properties of Nanocomposites Based on Acrylic Copolymers and Multiwalled Carbon Nanotube

Buy Article:

$105.00 + tax (Refund Policy)

Nanocomposites based on multiwalled carbon nanotubes (MWCNT) and various acrylic copolymers, poly(methyl methacrylate-co-butyl acrylate) (PMBA) and poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) (PMAA), were prepared and the effects of the copolymer composition on the thermal and electrical properties of the nanocomposites were investigated. The results showed that there was a decrease in the glass transition temperature (T g) with increasing MWCNT content in the nanocomposites based on the acrylic copolymers. This decrease in T g was attributed to the characteristics of the nanocomposites in which the compatibility between the matrix polymers and MWCNT were relatively poor and there was an increase in free volume at the interface. It was found that the critical concentrations, P cs, for the percolation of MWCNTs in terms of the electrical resistivity decreased with increasing acrylic acid content in the matrix polymers. In addition, the thermal conductivity of the nanocomposites increased with increasing MWCNT content if there was good compatibility between the matrix polymer and MWCNT while those of the nanocomposites with relatively poor compatibility between the matrix and MWCNT showed little change.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: 01 October 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more