Skip to main content
padlock icon - secure page this page is secure

Electrical Properties and Applications of Carbon Nanotube Structures

Buy Article:

$106.38 + tax (Refund Policy)

The experimentally verified electrical properties of carbon nanotube structures and manifestations in related phenomena such as thermoelectricity, superconductivity, electroluminescence, and photoconductivity are reviewed. The possibility of using naturally formed complex nanotube morphologies, such as Y-junctions, for new device architectures are then considered. Technological applications of the electrical properties of nanotube derived structures in transistor applications, high frequency nanoelectronics, field emission, and biological sensing are then outlined. The review concludes with an outlook on the technological potential of nanotubes and the need for new device architectures for nanotube systems integration.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Review Article

Publication date: April 1, 2007

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more