Skip to main content

The Shape Control of ZnO Based Nanostructures

Buy Article:

$107.14 + tax (Refund Policy)

Tetrapod-shape ZnO nanostructures are formed on Si substrates by vapor phase transportation method. The effects of two important growth parameters, growth temperature and VI/II ratio, are investigated. The growth temperature is varied in the range from 600 °C to 900 °C to control the vapor pressure of group II-element and the formation process of nanostructures. VI/II ratio was changed by adjusting the flux of carrier gas which affects indirectly the supplying rate of group VI-element. From the scanning electron microscopy (SEM), systematic variation of shape including cluster, rod, wire and tetrapod was observed. ZnO tetrapods, formed at 800 °C under the carrier gas flux of 0.5 cc/mm2 min, show considerably uniform shape with 100 nm thick and 1 ∼ 1.5 μm long legs. Also stoichiometric composition (O/Zn ∼ 1) was observed without any second phase structures. While, the decrease of growth temperature and the increase of carrier gas flux, results in the irregular shaped nanostructures with non-stoichiometric composition. The excellent luminescence properties, strong excitonic UV emission at 3.25 eV without deep level emission, indicate that the high crystalline quality tetrapod structures can be formed at the optimized growth conditions.

Keywords: NANOSTRUCTURE; NANOTETRAPOD; OPTICAL PROPERTIES; STOICHIOMETRIC COMPOSITION; ZNO

Document Type: Research Article

Publication date: 01 November 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content