Skip to main content

Fabrication of Vertical ZnO Nanowires on Silicon (100) with Epitaxial ZnO Buffer Layer

Buy Article:

$107.14 + tax (Refund Policy)

Vertical ZnO nanowires were successfully grown on epitaxial ZnO (002) buffer layer/Si (100) substrate. The nanowire growth process was controlled by surface morphology and orientation of the epitaxial ZnO buffer layer, which was deposited by radio-frequency (rf) sputtering. The copper catalyzed the vapor-liquid-solid growth of ZnO nanowires with diameter of ~30 nm and length of ~5.0 m. The perfect wurtzite epitaxial structure (HCP structure) of the ZnO (0002) nanowires synthesized on ZnO (002) buffer layer/Si (100) substrate results in excellent optical characteristics such as strong UV emission at 380 nm with potential use in nano-optical and nano-electronic devices.

Keywords: MICROSCOPY; NANOWIRES; PHOTOLUMINESCENCE; TRANSMISSION ELECTRON; VAPOR-LIQUID-SOLID GROWTH; X-RAY DIFFRACTION; ZNO

Document Type: Short Communication

Publication date: 01 November 2004

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content