Skip to main content
padlock icon - secure page this page is secure

An Efficacy of Spectral Features with Boosted Decision Tree Algorithm for Automatic Heart Sound Classification

Buy Article:

$107.07 + tax (Refund Policy)

This research work aims to classify the audio signals received from heart into normal/abnormal. The heart sound perceived has been referred as phonocardiogram (PCG) signals. An attempt has been made to identify a set of features that provide more accurate results for classifying PCG under designated categories using a variant of decision tree algorithm. After applying 6th order butter worth band-pass filter on PCG signals, the new features, viz. Tonnetz, Spectral contrast, and Chroma have been extracted. Further, XGBOOST, a variant of the decision tree has been used for classifying unsegmented PCG signals. The benchmark datasets, PhysioNet 2016, and PASCAL 2011 have been taken for validating the proposed methodology presented here. PhysioNet 2016 is comprised of sub-datasets, viz. A–F which contain a total of 3,240 PCG recordings, whereas the PASCAL 2011 contains 415 heart sound signals. The proposed approach considers a new feature set in conjunction with the existing ones; and it has resulted in mean accuracy, sensitivity, and specificity scores as 95.2, 94.22 and 96.18 respectively.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: February 1, 2021

More about this publication?
  • Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more