Skip to main content

Comparative Study: Artificial Neural Networks Training Functions for Brain Tumor Segmentation for MRI Images

Buy Article:

$107.14 + tax (Refund Policy)

Brain tumor detection from medical images is essential to diagnose earlier and to take decision in treatment planning. Magnetic Resonance Images (MRI) is frequently preferred for detecting brain tumors by the physicians. This paper analyses various Artificial Neural Networks (ANN) training functions for brain tumor segmentation such as Levenberg-Marquardt (LM), Quasi Newton back propagation (QN), Bayesian regularization (BR), Resilient back propagation algorithm (RP) and Scaled conjugate gradient back propagation (SCG). The training algorithms were employed in different sized network for segmentation. The results were carefully analyzed and measured using Dice similarity, sensitivity, specificity and accuracy measures.

Keywords: ANN; Brain Tumor; Feature Extraction; MRI; Training Function

Document Type: Research Article

Affiliations: Department of Computer Science, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India

Publication date: 01 April 2020

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content