Skip to main content

Rotation of Two-Temperature Generalized Thermoelastic Half-Space Subjected to Thermal Shock and Without Energy Dissipation

Buy Article:

$107.14 + tax (Refund Policy)

In this work, a mathematical model for the thermoelastic medium with constant elastic parameters in the context of two-temperature generalized thermoelasticity without energy dissipation has been constructed. The governing equations of the mathematical model will be taken when the medium is quiescent first. Laplace transforms techniques will be used to get the general solution for any set of boundary conditions. The solution will be obtained for a particular model when the medium is subjected to a thermal load by using stat-space approach. The inversion of the Laplace transforms will be calculated numerically and after that we’ll present the results graphically with some comparisons to study the impact of thermal or mechanical load on the speed of progress of mechanical and thermal waves through the medium. Also, to studying the effect of the two-temperature parameter rotation parameter on all the studied field.

Keywords: Rotation; State-Space Approach; Two-Temperature Generalized Thermoelasticity; Without Energy Dissipation

Document Type: Research Article

Affiliations: Mathematics Department, College of Science and Arts–Sharoura, Najran University, KSA

Publication date: 01 January 2017

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content