Skip to main content

A Novel Approach of Energy Efficiency Based on Multiple Data Collector Placement for Wireless Seismic Sensor Network

Buy Article:

$107.14 + tax (Refund Policy)

Since the geological environments are highly unpredictable and the battery capacity of seismometer nodes in the wireless seismic sensor networks (WSSN) is constraint, the lifetime of the network that using conventional single data collector may be dramatically reduced. Even with the most energy-efficient algorithm that deploys multiple data collectors, it is still too difficult to satisfy the system requirement in terms of energy consumption. In this paper, we therefore propose an optimal solution that uses multiple data collectors to minimize the total energy consumption of data transmissions in WSSN. The aim of this work is not only to determine how many data collectors are required, but also to find out how to place them in an effective way, so that the energy efficiency of the system can be further enhanced. In so doing, an optimal solution that is based on the placement of multiple data collectors is proposed. A two-step approach is adopted, in which the number of required data collectors is firstly calculated based on a graph theoretic approach and then the placement of the data collectors are further optimized according to maximize the network lifetime. The simulation analysis shows that with a given number of seismometer nodes, using the proposed algorithm, an optimal value can always be found to extend the WSSN lifetime. As the number of seismometer nodes are selected to be 200, 500, 800 and 1000, the lifetime of the WSSN can be improved by 176%, 236.8%, 408.4% and 575%, respectively.

Keywords: Cluster Formation; Data Collector Placement; Graph Decomposition; Network Lifetime; Wireless Seismic Sensor Network

Document Type: Research Article

Affiliations: 1: College of Instrumentation Electrical Engineering, Jilin University, Changchun, 130026, China 2: School of Computing and Communications, University of Technology Sydney, NSW, 2007, Australia

Publication date: 01 October 2016

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content