Skip to main content
padlock icon - secure page this page is secure

Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies

Buy Article:

$106.34 + tax (Refund Policy)

Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechanics and molecular mechanics is established. A code has been developed to construct the single walled carbon nanotubes with the desired chirality, extracting the vacant atoms with the corresponding atomic bonds between the neighbor nodes and calculating the effect of these vacancies on their vibrational properties. In order to investigate the effect of those vacant nodes, large number of simulations has been carried out with randomly positioned vacant atoms. Also, consecutive vacant nodes have been positioned in order to investigate their effect on the structural properties through the length of a single walled carbon nanotubes. Effects of vacancies on Young's modulus have also been investigated. It is concluded that any amount of vacant atoms have substantial effect on modal frequencies and modulus of elasticity. Chirality and the amount/position of the vacancies are the main parameters determining the structural properties.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: November 1, 2014

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more