Skip to main content

Survival Probability in a Quantum Walk on a One-Dimensional Lattice with Partially Absorbing Traps

Buy Article:

$107.14 + tax (Refund Policy)

Time dependence of the survival probability in a one dimensional lattice with randomly distributed and partial absorbing traps is analyzed as a function of concentration and absorption probability of the traps. The short and long time behaviors of the non-interacting quantum walks are identified with stretched exponentials. Dynamical scaling laws of the short and long time regimes as well as the crossover time between them are characterized. It is found that the short time behavior is more sensitive to the absorption probability and the crossover takes longer time for more transparent traps. Moreover, the stretching exponents increase with the transparency of the traps.

Keywords: QUANTUM COMPUTATION; QUANTUM WALK; SURVIVAL PROBABILITY; TRAP

Document Type: Research Article

Publication date: 01 July 2013

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content