Skip to main content

Growth Behavior and Magnetic Properties of Spherical Uranium Oxide Nanoclusters

Buy Article:

$107.14 + tax (Refund Policy)

The growth behavior and magnetic properties of spherical uranium oxide nanoclusters have been investigated using the generalized gradient approximation (GGA) to density functional theory (DFT). The geometries of U n O m clusters remain the O h symmetry after DFT relaxation. The largest binding energy corresponds to the cluster with the smallest deviation from the bulk (UO2) ratio. The electronic structures and magnetic properties of these nanoclusters are presented. We find the chemical bonding between the U and O atoms has a significant ionic character. The reduction of magnetism in the inner positions can be understood by the charge transfer and the hybridization between U atoms and the neighboring O atoms.

Keywords: GROWTH BEHAVIOR; MAGNETISM; NANOCLUSTERS; URANIUM OXIDE

Document Type: Research Article

Publication date: 01 February 2013

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content