Skip to main content
padlock icon - secure page this page is secure

Effects of Inlet Gas-Flow Rates on Synthesis of CuO Nanowires During Thermal Oxidation

Buy Article:

$106.34 + tax (Refund Policy)

Ω-shaped copper specimens were oxidized in a tube furnace with wet air at 1 atm. and inlet gas-flow rates from 0.01 to 1.4 l/min at 500 °C for 4 hours. Scanning electronic microscope (SEM) results show that the density of nanowires formed on the surface of specimens during oxidation is significantly related to inlet gas-flow rate and the positions of a Ω-shaped specimen. A 3-dimensional (3D) flow simulation using a CFD solver (Fluent) was used to express local gas flow field near the surface of the specimen. The relation among oxide morphology, including, no-wire, whisker and nanowire, shear stress of flowing gas near the surface of the specimen and inlet gas-flow rate is given in this paper. When the inlet gas-flow rate reaches the critical value of 0.15 l/min, whiskers or nanowires can be formed on the positions of Ω-shaped specimens with low shear stress of flowing gas near the surface of the specimen. The experimental results are explained by oxygen resident time on specimen surface and amount of oxygen through the local surface of a specimen.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: NANOWIRES; OXIDATION; OXIDES; SIMULATION

Document Type: Research Article

Publication date: September 1, 2012

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more