Skip to main content

Topological Effect on Spin Transport in a Magnetic Quantum Wire: Green's Function Approach

Buy Article:

$107.14 + tax (Refund Policy)

We explore spin dependent transport through a magnetic quantum wire which is attached to two non-magnetic metallic electrodes. We adopt a simple tight-binding Hamiltonian to describe the model where the quantum wire is attached to two semi-infinite one-dimensional non-magnetic electrodes. Based on single particle Green's function formalism all the calculations are performed numerically which describe two-terminal conductance and current–voltage characteristics through the wire. Quite interestingly we see that, beyond a critical system size probability of spin flipping enhances significantly that can be used to design a spin flip device. Our numerical study may be helpful in fabricating mesoscopic or nano-scale spin devices.

Keywords: CONDUCTANCE; GREEN'S FUNCTION; I– MAGNETIC QUANTUM WIRE; VCHARACTERISTICS

Document Type: Research Article

Publication date: 01 February 2011

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content