Skip to main content

Event-by-Event Simulation of a Quantum Eraser Experiment

Buy Article:

$107.14 + tax (Refund Policy)

We present a computer simulation model that is a one-to-one copy of a quantum eraser experiment with photons (P. D. D. Schwindt et al., Phys. Rev. A 60, 4285 (1999)). The model is solely based on experimental facts, satisfies Einstein's criterion of local causality and does not require knowledge of the solution of a wave equation. Nevertheless, the simulation model reproduces the averages as obtained from the wave mechanical description of the quantum eraser experiment, proving that it is possible to give a particle-only description of quantum eraser experiments with photons. We demonstrate that although the visibility can be used as a measure for the interference, it cannot be used to quantify the wave character of a photon. The classical particle-like simulation model renders the concept of wave-particle duality, used to explain the outcome of the quantum eraser experiment with photons, superfluous.

Keywords: COMPUTATIONAL TECHNIQUES; EVENT-BY-EVENT SIMULATION; QUANTUM ERASER

Document Type: Research Article

Publication date: 01 September 2010

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content