Skip to main content

Modeling of Plasmonic Waveguide Components and Networks

Buy Article:

$107.14 + tax (Refund Policy)

We review some of the recent advances in the simulation of plasmonic devices, drawing examples from our own work in metal-insulator-metal (MIM) plasmonic waveguide components and networks. We introduce the mode-matching technique for modeling of MIM waveguide devices. We derive the complete set of orthogonal modes that the MIM waveguide supports and use it to apply the mode-matching technique to the analysis of plasmonic waveguide networks. We also introduce several different equivalent models for plasmonic waveguide components, such as the characteristic impedance model for deep subwavelength MIM waveguides, the scattering matrix description of MIM waveguide junctions, and equivalent circuit models. The model abstraction provided by these equivalent models is important for the analysis and synthesis of device functions, as illustrated with the design of a waveguide mode converter.

Keywords: CHARACTERISTIC IMPEDANCE; EQUIVALENT CIRCUITS; MODE-MATCHING; PLASMONICS; SCATTERING MATRIX; SURFACE PLASMONS

Document Type: Review Article

Publication date: 01 August 2009

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content