Skip to main content
padlock icon - secure page this page is secure

Sustained Release of Zoledronic Acid from Mesoporous TiO2-Layered Implant Enhances Implant Osseointegration in Osteoporotic Condition

Buy Article:

$106.34 + tax (Refund Policy)

Implant surface modification that provides local sustained release of osteoinductive therapeutic agents enhances implant stability. We designed a mesoporous TiO2-layered titanium implant (MLT) by modified anodization technique that allowed local sustained release of zoledronic acid up to 21 days. Mesoporous layer has pore size 15 nm, depth ∼30 μm, volume 0.32 cm3/g, surface area 112.3 m2/g, surface roughness 20 nm and water contact angle 18.3°. Zoledronic acid-loaded MLT (MLT-Z) was biocompatible, showed anabolic effect on bone forming osteoblasts and catabolic effect on bone resorbing osteoclasts. MLT or MLT-Z implants were implanted in osteoporotic rat-tail vertebrae. Smooth implant in healthy rats were used as a positive control. Histomorphometric analysis showed that bone implant contact of smooth implant in osteoporotic rats was reduced by 4.1-fold compared to healthy rats and MLT-Z rescued the effect by 53%. Similar effect was observed in implant fixation, mechanical stability, BV/TV ratio, Tb.N, Tb.Th and OI% among the groups. Histological and μ-CT images strongly supported the above-mentioned findings. In conclusion, a novel surface-fabricated MLT-Z gives local sustained drug release, robustly enhances implant osseointegration and stability in osteoporotic condition, suggesting it as a promising implant model for patients with compromised bone quality.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Research Article

Publication date: November 1, 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more