Skip to main content
padlock icon - secure page this page is secure

Targeting Delivery of Rapamycin with Anti-Collagen IV Peptide Conjugated Fe3O4@Nanogels System for Vascular Restenosis Therapy

Buy Article:

$106.65 + tax (Refund Policy)

Coronary arterial disease (CAD) remains the leading cause of death globally. Although percutaneous coronary interventions (PCI) are most of the important clinical procedure for CAD treating, unfortunately, vascular restenosis is proved as the major drawback of PCI. Because of the complex nature of the restenotic process, the efficacy of drug administration is emphasized. Targeting drug delivery systems become a promising experimental approach for restenosis therapy. Hence, we design and fabricate a thermo/pH-responsive nanogel system with the magnetic inner core as the multifunctional nanocarrier for drug delivery and MRI/fluorescence imaging. To this end, NIPAm-based Fe3O4 core–shell structure nanogel is synthesized as the responsive nanosystem for rapamycin (RAPA) delivery, and the surface conjugation with anti-collagen IV peptide makes the nanosystem an ideal candidate for targeting delivery of RAPA. Based on its stimuliresponsive properties, the nanosystem shows desirable intracellular release behavior of RAPA and significantly reduces the adverse effect of RAPA. The in vitro cytotoxicity evaluations present the biosafety profiles and antiproliferation performance of the drug-loaded nanogels. Meanwhile, the magnetic Fe3O4 inner core shows enhanced T2 weight sensitivity, providing a high potential for imaging-guiding therapy. In the balloon angioplasty model, targeting nanogels are demonstrated accumulation at the injured site of artery. Compared with the non-targeting nanogels, treatment with peptide conjugated nanogels attenuates neointimal hyperplasia more effectively. The biochemical assays further reveal that the enhanced restenosis prevention effect is contributed to the selective release of RAPA at the injured sites of artery, which notably potentiate the nanosystem as a systemically targeting delivered treatment.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ANTI-COLLAGEN IV PEPTIDE; [email protected]; RAPAMYCIN; RESTENOSIS; THERMO/PH-RESPONSE

Document Type: Research Article

Publication date: July 1, 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more