Skip to main content
padlock icon - secure page this page is secure

Composite Polyelectrolyte Multilayer and Mesoporous Bioactive Glass Nanoparticle Coating on 316L Stainless Steel for Controlled Antibiotic Release and Biocompatibility

Buy Article:

$106.64 + tax (Refund Policy)

Bacterial infection in wounds or implants can cause osteomyelitis, eventually leading to orthopedic implant failure. In this study, polyelectrolyte multilayer (PEM) coating comprising collagen as the cationic layer, chitosan as the barrier layer and γ-poly-glutamic acid as the anionic layer were fabricated onto a 316L stainless steel substrate by spin coating technique. Tetracycline-loaded 57S mesoporous bioactive glass nanoparticles (57S MBG, SiO2:CaO:P2O5 = 57:33:10 by wt%) were introduced into the γ-poly-glutamic acid layers. Herein, 57S MBG nanoparticles were successfully incorporated into the PEMs with a total thickness of ∼53 μm on 316L stainless steel (SS-PEMs-57S), which exhibited good hydrophilicity with a contact angle of 18.71°. The hardness of SS-PEMs-57S was 0.66 GPa while the Young's modulus was 11.5 GPa; these values are similar to those for the cortical bone. The surface roughness of MBG nanoparticle-incorporated PEMs increased from 231 to 384 nm. Controlled release of tetracycline loaded in MBG nanoparticles resulted in sustained antibacterial effect for up to 7 days, with higher release efficacy at low pH, which may be induced by inflammation or infection. Tetracycline loaded in SS-PEMs-57S showed good bacterial inhibition and maintained good cell viability in rat bone marrow mesenchymal stem cells (BMSCs) in the MTT assay. Moreover, SS-PEMs-57S also promoted mineralization of BMSCs. Therefore, this surface modification technology has great potential for endowing orthopedic implants with antibacterial and osteoconductive properties.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 316L STAINLESS STEEL; BIOACTIVE GLASS; BONE MARROW MESENCHYMAL STEM CELLS; POLYELECTROLYTE MULTILAYERS; TETRACYCLINE

Document Type: Research Article

Publication date: April 1, 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more