Skip to main content
padlock icon - secure page this page is secure

Small Heterodimer Partner Negatively Regulates TLR4 Signaling Pathway of Titanium Particles-Induced Osteolysis in Mice

Buy Article:

$105.00 + tax (Refund Policy)

Arthroplasty has been widely performed worldwide. However, peri-prosthetic osteolysis and aseptic loosening induced by macrophages activated by wear particles still remain a predominant cause of long term prosthetic failure. Our study aimed to identify the role of small heterodimer partner (SHP) in secretion of proinflammatory cytokines by macrophages through Toll-like Recepters (TLR)s signaling pathway activated by wear particles both in vivo and in vitro. The effect of SHP on activation of TLR4 pathway and secretion of cytokines was observed in RAW264.7 cells and SHP gene over-expressed mice. Expression of TLR4, TRAF6, NEMO complex and proinflammatory cytokine TNF-α in macrophages stimulated by wear particles was up-regulated, while SHP was down-regulated. On the other hand, inhibition of SHP up-regulated the expression of NEMO complex and proinflammatory cytokine TNF-α in RAW264.7 stimulated by wear particles, while over-expression of SHP gene showed an opposite result. Over-expression of SHP gene could inhibit cranial osteolysis induced by wear particles in mice model. In conclusion, SHP down-regulates TLR4 signaling pathway to reduce osteolysis induced by titanium particles via in vitro and in vivo experimental models.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ARTIFICIAL JOINT REPLACEMENT; ASEPTIC LOOSENING; MACROPHAGES; NUCLEAR ORPHAN RECEPTOR SHP; TLR4

Document Type: Research Article

Publication date: 01 March 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more