Skip to main content
padlock icon - secure page this page is secure

Controllable Growth of Core–Shell Nanogels via Esterase-Induced Self-Assembly of Peptides for Drug Delivery

Buy Article:

$106.73 + tax (Refund Policy)

In this work, we developed an unexplored enzyme-responsive core–shell nanogel via the assembly of hydrogelators at the surface of silicon nanoparticles. The immobilized carboxylesterase at the surface of silicon nanoparticles can catalyse precursors into hydrogelators, self-assembling around the surface of silicon nanoparticles owing to its surface confinement effect. These novel phenomena can be confirmed by observation of their morphology and increased diameters through scanning electron microscopy, transmission electron microscopy and dynamic light scattering. Moreover, these resulting core–shell nanogels can achieve controlled growth of the gel layer by means of changing the concentrations of precursors. Because of their good biocompatibility, these nanogels can realize applications in enzyme-specific drug delivery as nanocarriers.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: DRUG DELIVERY; ENZYME; NANOGELS; PEPTIDES; SELF-ASSEMBLY

Document Type: Research Article

Publication date: February 1, 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more