Skip to main content
padlock icon - secure page this page is secure

Immunosensors Based on Nanomaterials for Detection of Tumor Markers

Buy Article:

$106.92 + tax (Refund Policy)

Nanomaterials have been widely used to immobilize biomolecules, amplify the signals and concentrate the analytes for detection with good properties including large surface area, good adsorption capacity and high surface activity. In recent years, nanomaterials such as carbon nanomaterials, noble metal nanomaterials, polymers, are widely applied to research and develop immunosensors with high sensitivity and selectivity, which monitor the antigen-antibody reaction for the detection of tumor markers. This review provides an introduction of immunosensors and focuses on the design of electrochemical (EC) immunosensors, electrochemical luminscence (ECL) immunosensors and photoelectrochemical (PEC) immunosensors based on nanomaterials in nearly three years.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics


Document Type: Review Article

Publication date: January 1, 2018

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more