Skip to main content

Novel Synthesized Nanofibrous Scaffold Efficiently Delivered hBMP-2 Encoded in Adenoviral Vector to Promote Bone Regeneration

Buy Article:

$107.14 + tax (Refund Policy)

Treatment of bone defect, especially large bone defect, is still a challenge for physicians clinically. Bone morphogenetic protein 2 (BMP-2) can induce osteoblast differentiation and promote new bone formation. Recently, nanomaterials have been widely used as a carrier to hold and deliver biomolecules, like human bone morphogenetic protein 2 gene (hBMP-2) in target cells/tissues. Most nanomethods, however, need further modification in order to work more reliably in clinical applications. Therefore, in this study, we created a novel poly(lactic-co-glycolic acid [PLGA]) nanofibrous scaffold using an electrospinning technique; then, using a lyophilization process to allow nanofibrous scaffold to adsorb hBMP-2 adenoviral vector, AdCMV-hBMP2. Results indicate that the lyophilized poly(lactic-co-glycolic acid) nanofibrous scaffold/AdCMVhBMP2 can efficiently release and transduce cells in vitro and in vivo, and secrete functional hBMP-2 to promote osteogenic differentiation in vitro, and new bone generation in vivo. Importantly, the amount of newly formed bone covered >80% of the bone defect area 8 weeks post-implantation in vivo, in which the defect could not be repaired without any treatment in general. Our data demonstrate that the lyophilized PLGA nanofibrous scaffold/AdCMV-hBMP2 created herein stably and efficiently release functional viral vector to transduce local cells, resulting in secretion of hBMP-2 and promote new bone formation in vivo. Our new nanodelivery method has potential clinical application for the repair of large bone defects.

Keywords: ADENOVIRAL VECTOR; BONE FORMATION; HBMP-2; OSTEOGENIC DIFFERENTIATION; PLGA NANOFIBROUS SCAFFOLD

Document Type: Research Article

Publication date: 01 April 2017

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content