Skip to main content
padlock icon - secure page this page is secure

Rapid and Sensitive Fusion Gene Detection in Prostate Cancer Urinary Specimens by Label-Free Surface-Enhanced Raman Scattering

Buy Article:

$110.00 + tax (Refund Policy)

Recurrent chromosomal rearrangements such as fusion genes are associated with cancer initiation and progression. Prostate cancer (PCa) is a leading cause of cancer-related deaths in men and the TMPRSS2-ERG gene fusion is a recurrent biomarker in about 50% of all prostate cancers. However, current screening tools for TMPRSS2-ERG are generally confined to research settings and hence, the development of a rapid, sensitive and accurate assay for TMPRSS2-ERG detection may aid in clinical PCa diagnosis and treatment. Herein, we described a new strategy for non-invasive TMPRSS2-ERG detection in patient urinary samples by coupling of isothermal reverse transcription-recombinase polymerization amplification (RT-RPA) to amplify TMPRSS2-ERG transcripts and surface-enhanced Raman scattering (SERS) to directly detect the amplicons. This novel coupling of both techniques allows rapid and quantitative TMPRSS2-ERG detection. Our assay can specifically detect as low as 103 copies input of TMPRSS2-ERG transcripts and was successfully applied to clinical PCa urinary samples. Hence, we believe our assay is a potential clinical screening tool for TMPRSS2-ERG in PCa and may have broad applications in detecting other gene fusion transcripts in other diseases.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: FUSION GENES; ISOTHERMAL AMPLIFICATION; LABEL-FREE SURFACE-ENHANCED RAMAN SCATTERING; PROSTATE CANCER; URINE SAMPLES

Document Type: Research Article

Publication date: September 1, 2016

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more