Skip to main content
padlock icon - secure page this page is secure

A Nanoparticle Carrier for Co-Delivery of Gemcitabine and Small Interfering RNA in Pancreatic Cancer Therapy

Buy Article:

$106.34 + tax (Refund Policy)

Background: The concept of precision medicine to treat cancer shows promise and a co-delivery carrier for chemotherapy drugs and target genes is the key tool for both basic research and clinical application. To address this, we developed a cancer-targeting nanoparticle vector to transfer gemcitabine (Gem) and small interfering RNA (siRNA) to pancreatic cancer. Methods: Iron oxide nanoparticles (IONPs) resonant at 15 nm were conjugated with the single chain variable fragment (scFv) against CD44v6 (scFvCD44v6), which has proven pancreatic cancer-targeting specificity as reported in our previous study. Gem was then linked through a lysosomally cleavable tetrapeptide linker, resulting in a scFv-targeted nanoparticle construct, which was subsequently conjugated to siRNA targeting the Bmi-1 oncogene (siBmi-1) to obtain the multifunctional nanoparticle scFv-Gem-siBmi-1-NPs. A series of biological experiments were performed to test its biophysical characterization, gene silencing efficacy and anti-tumor effect in vitro and in vivo. Results: The multifunctional nanoparticle not only possesses an ultra-small size of approximately 80 nm, excellent biocompatibility and biodegradability, but also exerts a synergistic anti-tumor effect both in vitro and in vivo, such as inhibition of tumor cell growth, invasion and migration, reduction of cell cycle progression and promotion of tumor apoptosis. Furthermore, this nanoparticle can efficiently target pancreatic cancer in vivo, resulting in the enhanced bioavailability and efficacy of Gem. Conclusion: scFv-Gem-siBmi-1-NPs provide an effective and targeted co-delivery of Gem and siBmi-1 to pancreatic cancer, and exert an efficient and corporate anti-tumor therapeutic effect. This prospective vector shows promise for precise treatment of pancreatic cancer.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: BMI-1; CO-DELIVERY OF SIRNA AND DRUG; GEMCITABINE; NANOMEDICINE; PANCREATIC CANCER; TUMOR-TARGETING

Document Type: Research Article

Publication date: August 1, 2016

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more