Skip to main content

Therapeutic Effect of Akt1 siRNA Nanoparticle Eluting Coronary Stent on Suppression of Post-Angioplasty Restenosis

Buy Article:

$107.14 + tax (Refund Policy)

For effective treatment of restenosis, therapeutic genes are delivered locally from a coated stent at the site of injury, leading to inhibition of smooth muscle proliferation and neo-intimal hyperplasia while promoting re-endothelialization. In a previous study, we delivered Akt1 siRNA nanoparticles (ASNs) from a hyaluronic acid (HA)-coated stent surface to specifically suppress the pro-proliferative Akt1 protein in smooth muscle cells (SMCs). In the present study, therapeutic efficacy was investigated in a rabbit restenosis model after percutaneous implantation of an ASN-immobilized stent in a rabbit iliac artery. Quantitative and qualitative analyses of in-stent restenosis were investigated in an in vivo animal model by micro-CT imaging and SEM observation, respectively. Proliferation status and neo-intima formation of the vascular tissues located near ASN-immobilized stents were analyzed by immunohistochemical staining using anti-Akt1 and anti-Ki67 antibodies and histological analyses, such as hematoxylin and eosin staining and Verhoeff's elastic stain. Re-endothelialization after implantation of an ASN-immobilized stent was also analyzed via immunohistochemistry using an anti-CD31 antibody. To elucidate the molecular mechanism related to reducing SMC proliferation and subsequent inhibition of in-stent restenosis in vivo, protein and mRNA expression of Akt1 and downstream signaling proteins were analyzed after isolating SMC-rich samples from the treated vasculature. The implanted Akt1 siRNA-eluting stent efficiently mitigated in-stent restenosis without any side effects and can be considered a successful substitute to current drug-eluting stents.

Keywords: AKT1 SIRNA; CORONARY STENT; GENE ELUTING STENTS; HYALURONIC ACID; MICRO-CT IMAGING; RESTENOSIS; SMOOTH MUSCLE CELLS

Document Type: Research Article

Publication date: 01 June 2016

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content