Skip to main content
padlock icon - secure page this page is secure

Targeting Epirubicin Plus Quinacrine Liposomes Modified with DSPE-PEG2000-C(RGDfK) Conjugate for Eliminating Invasive Breast Cancer

Buy Article:

$110.00 + tax (Refund Policy)

Recurrence of invasive breast cancer could arise from the residual cancer cells after comprehensive treatment. It is possible that residual invasive cancer cells are capable of forming highly patterned vasculogenic mimicry (VM) channels, leading to relapse and metastasis. In the present study, a new type of targeting epirubicin plus quinacrine liposomes was developed by modifying functional DSPE-PEG2000 with C(RGDfK), a cyclic peptide containing Arg-Gly-Asp. These liposomes could potentially eliminate invasive breast cancer and destroy VM channels. Evaluations were made in human invasive breast cancer cells and their xenografts in nude mice. The results showed that the targeting epirubicin plus quinacrine liposomes could enhance the accumulation and uptake of the drugs in cancer tissues, kill cancer cells directly, activate apoptotic enzymes, destroy the VM channels and downregulate the VM channel-forming marker molecules (EphA2, FAK, PI3K, MMP 9, MMP 14, VE-Cad and HIF-α), thereby exhibiting a strong overall anticancer efficacy. The targeting epirubicin plus quinacrine liposomes provided a promising strategy to treat invasive breast cancer and to prevent the relapse arising from VM channels after chemotherapy.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: EFFICACY; INVASIVE BREAST CANCER; MARKER MOLECULES; TARGETING EPIRUBICIN PLUS QUINACRINE LIPOSOMES; VASCULOGENIC MIMICRY CHANNELS

Document Type: Research Article

Publication date: August 1, 2015

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more